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Abstract

— (;his study addresses two steps in a process known
as principle components analysis using Monte Carlo
techniques. An analysis is presented of two popular
dimensionality assessaent techniques, Kaiser’s
criterion and Catell’s Scree test. The factor
interpretation issue is addressed through a regression
study in which the grand mean square error between

popul ation and sample factor loading matrices is

predicted. The notion of a complexity index is also

1ntroduce€7ﬁ‘,
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Introduction

Background

Factor analysis is a widely used multivariate data
analysis technique. This technique allows an analyst to
investigate the underlying structure of a set of
variables over which data has been gathered.

Factor analysis has seen its most concentrated
application in the behavioral sciences. Even though the
methods and madels of factor analysis are of a
statistical nature, factor analysis was developed
sainly by psychologists (Joreskog,1979) and as such a
literature search in the area of factor analysis will
lead one to such journals as Psychometrika and
Psychological Reports.

Objectives of Factor Analysis. One object of

factor analysis is to determine the underlying
dimensionality of a process by finding independent
factors which are highly related to one or more of the
variables in question. The process by which an
investigator determines (via factor analysis) the
dimensionality of a set of data will be called, for
purposes of this report, the disensionality assessaent.
After the disensionality assesseent has been sade it
would be desirable to be able to give a simple
interpretation to each of the factors (McNichols,1980).

At this point a process know as rotation is used in an

1
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atteapt to develop a sispler more easily interpretable

solution. So, another objective for the investigator is

to interpret the extracted factors correctly. This
objective will be called, again for the purposes of
1 this report, factor interpretation.

Principal Component Analysis. This report will

deal exclusively with a methodology known as principal
components analysis (PCA). Psychologists draw the
following distinctions between factor analysis and
principal components analysis. In factor analysis an
attempt is made to find a certain number of factors,
fewer than the number of variables, such that the
intercorrelations between the variables is reproduced ]
f { ‘ exactly. In PCA ,independent factors are extracted from
the data until a sufficient proportion of the total
variance exhibited by the data is reproduced by the
factors. Hence, PCA is said to be variance oriented
while factor analysis is said to be correlation
oriented (Joreskog,1979). For purposes of this report
PCA will be considered a "factor analytic® procedure.

Computational Procedure. The PCA computational

procedure consists of three steps (1) the preparation

of the caorrelation matrix, (2) the extraction of the

initial factors - from whence a dimensionality

assessaent is made (this step is where the investigator
L explores the passibility of data reduction) and (3)

rotation to a term. .. ¢ 4tion - a search for simple

2
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and interpretable factors (Nie,1975) (McNichols,1980).

1. Preparation of the correlaton matrix. To
prepare the correlation matrix the following procedure
is used. First let n obsevations of some random

variable be given by a nx1 vector X

™
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Thus we have n observations on a single variable. If we
have k such variables we can assemble them in a matrix
such that each column represents n observations on the

k variables. This data matrix, X, is a nxk matrix.
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(Where the subscript i denotes the ith observation and
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the subscript j denotes the jth variable.)

if each xij is standardized ie. set equal to

{where ‘i’j is the sample mean of the jth variable and sj
is sample standard deviation of the jth variable) and
if the matrix multiplication XTX is performed then the
resultant product is the sample correlation matrix.

2. Extraction of the initial factors. The second
step in the process is to extract the eigenvalues from
XTX. The extracted eigenvalues, when rank ordered, are
the basis for most of the currently popular
dimensionality assessment techniques. Once this
assessment has been made the eigenvectors associated
with the retained eigenvalues are normalized. these
vectors are then multiplied by the square roots of
their respective eigenvalues and assembled in matrix
form. This matrix is called the factor loadings matrix,
this is because each coefficient can be said to
represent a "loading” of that particular variable to
the factor.

3. Rotation to terminal solution. Since the
normalized eigenvectors (or principal components as
they are sometimes called) are by definition sutually ;

orthogonal, the PCA methodology has, therefore, yields a
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basis for the data space whose dimension is less than
or equal to the rank of the correlation satrix. The
loadings matrix , or factor structure msatrix, is not
unique. That is to say, the factor structure matrix msay
be rotated arbitrarily and will still explain the same
amount of total variance. Rotation schemes have been
developed to “clean up” the factor structure msatrix and
hence aid in factor interpretation (McNichols,1980).
This rotation for interpretation is the third and final
step.

For a more detailed mathematical and statistical
development see (Lawley and Maxwell,1971),

(Harman, 1967), (Harris,1973).




Problem Statesent

One major problem facing an investigator is trying
to determine how many factors to retain.
Unfortunately, the dimensionality assesssent procedure
for PCA has not been rigidly defined. Several
alternatives are available to an investigator. These
include the Scree test (catell, 1966), Horn’s test
(Horn, 1965), and the "fraction of variance explained”
test (Kaiser, 1960). There does not appear to be
evidence that any one of these is superior to the
others. It would be of interest to determine which
test is the most powerful.

Recent research suggests that factor analytic
procedures can be significantly influenced by sample
size, the number of variables, number of inherent
factors, complexity of the inherent factor structure,
and the interactions between these. The following
questions are raised:

1) To what extent is the dimensionality
assessment biased by these influences? How is the
variance of the dimensionality assesssent affected?

2) How is factor interpretation affected by
these influences? More specifically, how is the size
of the mean square error (MSE) (or perhaps RMS error)
of sample loadings affected? Can MSE (or RMS errors)
be reasonably predicted as a function of the

forementioned influences?




3) 6An investigator beginning a factor analytic
study starts with limited information. Assuming he
A knows the correlation matrix of the sample dataj is
there some rule of thumb based on the condition number
: of this matrix, the number of variables, and the sample

size which might aid him in estimating errors he might

expect in a sample factor loadings matrix?




Review of the literature

Browne (1968) states,"There is no statistical test
of significance for the number of factors applicable to
the principal factor estimates and rules of thumb are
generally used for estimating the number of factors."

It is important to note that factor analysis is
not devoid of statistical inference tools. Cliff and
Hamburger (1967) assert that

* The results available from statistical
theory, while useful, leave a large area
where the needs of the investigator are
unsatisfied. The statistical tests for the
number of factors are all tied, naturally
enough, to the repective methods for
estimating factors. Moreover , these methods
of estimation are either computationally
arduous .... or unfamiliar .... Consequently,
they are rarely used and so the statistical
tests are rarely applied. More important than
this is the fact that the number of factors
in a given matrix is only one of the many
concerns of the investigator. He is
interested in a wide variety of statistical
questions, and he is interested in them as
they arise in the methods of factor analysis
currently in use.

Factor analysis is not the only field of
statistics where questions of practical
interest have been too complex or too
difficult to specify sathematically for
analytic solution. In such instances it is
fairly common practice to take the Monte
Carlo approach, in which samples $rom somse
specified population are generated by some
random process.”

Tucker (19464) and Linn (1968) used a Monte Carlo
approach to study what Psychologists tera pyschometric
error. Psychometric error arises when, say, a given

battery of tests are measuring factors dif¢ferent from

8
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those factors it was designed to seasure.

Tucker’s approach entailed the pesrturbation of
idealized common factor loadings. Tucker constructed
what he called a “"formal model”. In the formal msodel ,
the idealized loadings were changed by random
deviations. Small loadings on over 100 additional
factors were also generated by a random process. In

this test, then, the common factor loadings were

perturbed and this effect was compounded by the
presence of a large number of nuisance factors. This
expanded factor loading matrix was then multiplied by
its transpose to yield a correlation matrix. This
correlation matrix was then factored to yield a factor

{ loading matrix. This, then, is the factor loading

matrix of what Tucker calls the “simulation model®.
Tucker asserts that by comparing the factor loading
matrix of the "formal model” to that of the "simulation
sodel” one can measure the degree of psychometric error
between the idealized factor structure and the
perturbated factor structure.

Horn (1965) suggested a novel application of the
Monte Carlo procedure to aid in disensionality

assessaent. Horn’s procedure is as follows:

1) Biven a data matrix of m msasuresents on n

variables, the sample correlation matrix is prepared

and its eigenvalues are extracted.

2) Generate n samples of m independent
9




observations from a norsally distributed population of
random numbers. Prepare this correlation satrix and
extract its eigenvalues. This process is to be repesated
K times to yield K sets of eigenvalues. Each set of
eigenvalues is rank ordeted and averages of the largest
eigenvalue, second largest eigenvalue, etc. are
computed across the K sets. (Note that K should be
chosen large enough to ensure a good estimate for the
means) .

3) Compare, in rank order, the eigenvalues due
to the real world data with the eigenvalues of the K
randomaly generated correlation matrices. Pick the
smallest eigenvalue from the real world data
correlation matrix whose value is larger than its
counterpart from the randomly generated matrices.

Horn argues that this procedure will reduce the
number of factors that would have been retained by,
say, the Guttman (1954) weaker lower bound. (Guttman’s
weaker lower bound is more commonly referred to as
Kaisér’s criterion. Kaiser (1960) first adapted a
procedure of retaining all factors whose eigenvalues
were all greater than or equal to one.). Horn feels

that too many factors will have been retained by the

other criteria due to the fact that these tests ignore

sampling error and the error which Horn refers to as
least squares “"capitalization”. Least squares

“capitalization” refers to the fact that, in factor

10




analysis, the first derived factor is constructed in
such a fashion as to take up as such of the variance
present as possible (in the least squares sense) and as
such “capitalizes” on the chance fluctuations in a
particular set of data. Horn, then (to use engineering
vernacular), claims that the “"real " eigenvalues ride
above those eigenvalues due to the inherent “noise” of
the process being investigated. Horn makes no
pretensions, however , as to the validity of his
procedure and essentially presents his rationale as a
rule of “thumb®*. Although Horn’s reasoning appealed to
this author, experts in the field have not received the
rationale with open arms. Cliff and Hamburger (1967) go

s0 far as to state that Horn’s arguments are purely

*"verbal"™ and present a hypothetical counter example.
The counter example goes as follows: suppose the
experimental situation is such that there is a very
large common factor present and a second much smaller
one. The eigenvalue of the large factor may be so large
that all succeeding eigenvalues are much less in
magnitude than one. In the random data we should find
several eigenvalues greater than one (npprox£nately 172
of them). Hence, when the eigenvalues comparisions are
made we will only retain the single large factor. So,
in this counter example, Horn’s rationale has
underestimated the number of true factors. In defensas

of Horn, however, one might wonder how important that

11




other small factor was to the analysis, that is to say,
what is the penalty of ignoring such ssall factors?
Browne (1968) published a lengthy Monte Carlo
study in which he examined the effects that increasing
i sample size, and increasing the number of variables
while holding constant the number of factors had on
estimates of factor loadings. Browne compared and
contrasted several factor analytic techniques (PCA was
not analyzed, but a hybrid technique which placed th?
communalities on the diagonal of the correlation msatrix
was examinaed). The same population factor matrix was
used throughout his study. This matrix had 16 variables
which loaded on 4 factors with communalities ranging
from .9 to .1. Using a method due to Odel and Feiveson
(1966), random correlation matrices were generated and
factor analyzed using five different techniques. Browne

presents extensive tables which show various attributes

of the sample loadings he obtained. Browne demonstrates

the superiority of of a technique called "maxisum
likelihood” to estimate factor loadings. He also
studied the dimensionality assessment problem and found
that although none of the sethods proved completely
satisfactory, the decision procedure based on a

sequence of likelihood ratio tests and the criterion of

number of eigenvalues greater than one of the sample
correlation matrix gave the best results of the sethods

considered. The other criterion considered was due to

12




Saunders (1960), this technique involves taking, at
each iteration of a factor analytic technique called
Thomson’s method (Thomson, 1934), the number of positive
eigenvalues greater than the abéolute value of the
ssallest eigenvalue as a criterion for the number of
factors to be used for the following iteration.

Linn (1968) suggested an approach to the
dimensionality assessment problem which is similar in
spirit to Horn’s procedure. Instead of analyzing the
real variables and the randomly generated variables
separately,they are analyzed jointly. In Linn’s
procedure k new variables are introduced to the real
data and if there are m observations on each of the
original variables, m independent observations are
generated for the k new variables. All the observations
across both sets of the variables are then used to
prepare a correlation matrix which is subsequently
factor analyzed. The dimensionality assessment is then
based on those factors which are primarily composed of
real variables. The factors, whose main loadings are
those of the generated variables, are to be discarded,
then, as random factors. Linn (1968) expanded the scope
aof his original 1964 atudy. Linn’s 1964 study was
limited by the fact that only two cbserved satrices
were used and each of these was based on a sample of
size 80.

Catell (1966) suggests a brief, easy to apply test
13
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for dimensionality assesssent. The test entails simply
graphing the eigenvalue magnitudes versus the factor
number (the factor number, for instance, of the factor
corresponding to the largest eigenvalue is 13 the
second largest eigenvalue is 2, etc.). Catell noticed
that often in empirical data a "break"” was exhibited in
the eigenvalue curves. This break, Catell reasoned,
signalled the the beginning of the trivial factors and
started a more gradually sloping linear trend in the
eigenvalue curve which resembled a scree line. A scree
line is the shape that rocks sliding off a hill will
assume at the bottom of the hill. Although this test is
not Monte Carlo in nature it is mentioned because Horn %
(1963) and Linn (1968) both noticed this break in
eigenvalues magnitude.

Hamburger (Cliff and Hamburger,1967) performed a
limited Monte Carlo study to examine the apparent break
in eigenvalue curves. To be more specific, Hamburger
sought to find a break where two adjacently ranked
eigenvalues are sharply different in size while on both
sides of the break the decrease is more gradual. He
reports that when sample sizes as are high as 400, then
using the break in eigenvalue magnitude as a decision
rule for factor retention was flawless (at least for

the matrices examined in the study) and whan sample

sizes were reduced to 100 the rule usually gave correct
results. Apparently 4 different simple structure types
14
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were examined over some 160 randomly generated sample
correlation matrices. Hamburger fails to report the
numaber of population common factors and variables that
were used to generate his sample correlation satrices
and as he points out, “These conclusions are of course
tempered by the fact that results probably depend on
the number and size of common factors and the number of
variables ....".

Joreskog (1963) studied the sampling errors of
individual loadings on unrotated common factors. He
used a factor analytic technique which he developed in
the 1962-1963 time period (Joreskog,1962,1963). this
procedure is reported to yield factors very similiar in
i { appearance to those generated by the PCA procedure. In
this particular study Joreskog generated a small nusber
of sample correlation matrices, under various
conditions, and analyzed various characteristics of
them. Two cases stand out in particular. In one case,
six 20-variable sample correlation matrices were
generated over uncorrelated factors. In three of the
satrices, the factor scores were assumed to be noraally

distributed while in the other three matrices the

factor scores were assumed to have a rather strong

; skewness. Sample sizes for each set of three
correlation matrices were 100, 200, and 300. When the
i | sample correlation matrices were factor analyzed to

{ yield sample factor loading matrices it was found that
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the root sean square (res) deviation of sample loadings
to population loadings was somewhat less than l//ﬁ,
where N is sample size, the approximate standard error
of a zero correlation. There were no consistent
differences reported due to skewness.

A second case showed a sharp contrast to the first
case. The population factor structure chosen for
examination, in this case, was a 10—-variable three
factor structure. The structure exhibited perfect
simple structure. Joreskog generated 10 sample
correlation matrices for each of the three sample
sizes. This time the differences between the
population loadings and the sample loadings were very
creat. In some samples one or more of the factors
generated could not be confidently matched with
population factors. These errore decreased slightly as
the sample size was increased.

Joreskoqg next decided to rotate the previous set
to its

of factors, via a least squares procedure,

population structure. The resultant standard errors of
the rotated loadings were quite small; somewhat smaller
than 1/VN. Alsc, the sampling errors of non—-zero
loadings tended to be smaller than those for zero
loadings, in the same manner that sampling errors for
the Pearson correlation coefficients are proportional
to 1-r®. Browne (1948) also cbserved that the saspling

errors of rotated factor loadings were about the samse

16
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as correlation coefficients, of the order 1/VN.

Joreskog also looked at the sampling error of
rotated loadings when the factor scores were given from
a rectangular distribution. He found that although the
standard errors of the loadings rose slightly in this
case they remained less than 1/'N and exhibited the
same proportionality to the magnitude of the original
loadings as found in the normally distributed factor
score cases. This result (coupled with the skewed
factor score distribution results previously mentioned)
suggest that factor analytic methods are reasonably
robust in respect to moderate departures from the
normally distributed factor score assumption.

Hamburger (Cliff and Hamburger, 1967) observed a
bias in the estimates of individual factor loadings.
Hamburger does not state his original factor structure
but he does state that the sample sizes studied were
100 and 400. He noticed that larger loadings (.6 to .9}
were consistently underestimated while the smaller
loadings (.2 to .5) showed a tendency to be
overestimated. Browne’s (1968) data exhibited a
similiar trend. The factor anaiytic procedure used for
these cases was PCA with squared multiple correlations
placed on the diagonal of the input correlation natrix.

Cliff and Pennell (1967) studied in some detail
the effects of communality, factor strength, and

loading size on the sampling characteristics of factor

17




lnadingé. The sampling characteristics addressed in
this study were referred to as “stability” and "bias".
Stability refers to the amount of variability an
individual factor loading might be expected to exhibit
. from sample to sample. Bias refers to the extent to
which the mean of a sampling distribution of factor
loadings might be expected to approximate the
population loading. i
Two model population factor structures were

studied. Each factor structure was constructed with

four different factor strengths, four different
communalities, and four different loading sizes. The
loadings were situated in such a fashion to facilitate
{ various comparisons. For instance, by choosing selected
loadings, it was possible to compare the effect of
factor strength on given loadings of equal magnitude
and communality. The loadings of the first model
structure ranged from .9 to .45, while the secund’s

loadings ranged from .7 to .35. Fifty samzle

caorrelation matrices were generated for each of the
model structures. The sample sizes were not given.
These matrices were factor analyzed by the PCA
procedure with communalities placed on the diagonal.

. Four factors were extracted and the resultant structure
was rotated, via a least squares procedure due tao Cliff

(1964), to fit the model structure. The means and

standard deviations of the individual factors were

18
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calculated over the 50 saaple structures. Individual
factor loadings exhibited a wide variety of sample
frequency distributions.

Several interesting influences affecting stability
were noted. A non—zero loading which was associated
with a large communality was almost always associated
with smaller standard deviations then those loadings
associated with smaller communalities. A similiar trend
was noticed for zero loadings. It was also noticed that
the larger a loading was, the smaller its standard
deviation tended to be. The trends were presented quite
clearly in graphs in the text of the article. The
authors further noticed that stronger factors tend to
produce more stable loadings, apparently independent of
the other parameters.

Cliff and Pennel next summarized these
observations in a multiple regression study. The
dependent variable was the standard deviation of the
factor loadings. There were 7 independent variables::

1. Size of population factor loading

2. Population communality of the variable

3. Number of non—-zero loadings on the factor
4. Number of non-zero loading on the variable
5. Squared loading on the factor

6. Discrepancy between loading and other loadings
on the factor

7. Mean loading on the factor
The correlation matrix was prespared and
correlations of the order .80 were noted for predictors

1,2,5,7. Using a stepwise regression routine it was
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found that six of the variables could account for
nearly 89% of the variance present. The best two
predictors were 6 and 7 which together explained 86% of
the variance. The authors, howeQ-r, point that
predictor pairs 2 and S or 2 and 7 give rts of .842 and
<843 respectively. No power transformations or
interactions were tested. The authors also report
instances of bias in the sample factor loading matrix
but do not attempt to characterize it.

Cliff and Pennell summarize by concluding

"...that communality rather than loading size

is the important determiner of

stability...Higher communalities mean not

only greater stability for the loadings of

specific tests (variables) but also load to

i stronger factors which mean that the

stability of all the loadings is improved.*

Cliff and Pennell did not address sample size and
its possible interaction with other effects. Also the
number of variables and factors were not varied.

Pennell (1968) extended the study by looking at
the influences of communality and N (N is the sample
size used to generate sample correlation coefficients)

on the sampling distributions of factor loadings.

Pennell inserted variables with different communalities

in randomly constructed factor structures. Samples were
drawn from the population correlation msatrix to prepare
a sample correlation matrix. The sample correlation

matrix was then factor analyzed using PCA with squared

multiple correlations on the diagonals. As in Cliff and
20
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Pennell’s 1967 study, the standard deviation of the

factor loading was taken to be the dependent variable.

Pennell noticed in the 1967 study that univocal
variables (variables which load.on a single factor) not
only facilitated rotation and subsequent factor
interpretation but also resulted in smaller sampling
errors. Further it was noticed that zero loadings seem
to exhibit a greater degree of variability than a
non-zero loadings. Pennell hypothesised that the
variability of a loading might increase with its
complexity across the factors. To avoid the confounding
of error in complex variables Pennell used only
univocal tests inserted in randomly constructed factor
structures.

The research design chosen was a two way analysis
of variance with S levels of the two independent
variables, N and communality. The levels of N were
taken as 100, 150, 300, 600, and 2500. The levels of
communality were taken as .1, .3, .9, .7 and .9. for
the test variables. The test variables were inserted
into a randomly constructed, 12 variable by 2 factor,
population structure (The test variable’s position in
the structure was also determined in a random fashion.)
Three such random structures were generated for each of
the ANOVA’s 25 cells. These 73 structures then were
used to generate 100 sample correlation matrices. These

correlation matrices ware then factor analyzed in the
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fashion previously mentioned and rotated via Cliff’s
(1966) procedure back to the population factor
structure. The standard deviations of the zero and
non—zero sample correlation satrices were calculated
for both blocks of correlation matrices. Hence each
cell of the ANOVA contained three replications of
sample standard deviations. The subsequent fixed
effects, two way ANOVA revealed that both main effects
and their interactions were significant. This was true
for both non-zero and zero loadings. It was noticed
that while the F ratio for N remained approximately the
same for both non-zero and zero locadings, the F ratio
due to communality was strongest for non-zero loadings.

Graphs were drawn that depicted the standard
deviations (non—zero loadings) of the various test
variables as functions of 1//N. The results were
striking, in all but one case, clear linear trends were
observed. It was also clear from the graphs that the
standard deviations were conditional on the magnitude
of the variable’s communality. Similar trends were
observed for zero loadings although differences due to
communalities were harder to discern.

Puennell asserts that his study has demonstrated
clearly the advantage of developing factor pure
(univocal) variables for studies of psychological
traits, because these variables exhibit the ssallest

amount of sampling errors in the non-zero locadings (the
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loading'usually of most interest.)

Pennel presents tables which define 95X confidence
intervals about the zero loadings as a function of N.
These tables graphically refute the rule of thumb that
selects only loadings greater than .3 as being
significant. This author reminds the reader that a
“forced fit" rotation scheme was employed to generate
these values and as such the values in the table arise
when the correct structure is known, a priori, and the
sample loading structure is rotated to fit it. Hence
errors here are due to the factor analytic method and
sampling errors. Obviously, investigators may implay
factor analytic and rotation schemes which will produce
effects other than those due only to sampling error.
Pennell closes his paper with an interesting table in
which he shows the size of sample loadings necessary to
be significately different from the non—-zero loadings
he tested (.9, .8, .7, .6, .5) at an alpha of .03. For
example, when N is 100, a sample loading would have to
be less than .79 to reject the hypothesis that it was
actually .90.

Manners and Brush (1979) studied the "reliability”
of factor analytic techniques. Reliability is defined
as (a) the mean squared error between factor loadings
for sample and population factor loading structures and
(b) the ability of a factor analytic moadel to capture

corractly the number of factors in the population. The
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research endeavored to compare the reliability of four
separate factor analytic techniques with respect to the
effects of sample size, number of variables, and number
of factors. An analysis of variance approach was used
where the treatments were taken as a) the number of
variables, b) the number of observations (observations
on the variables), and c) the four different factor
analytic models. All possible interactions were also
examined.

The experimental procedure called for use of a
factor structure due to Browne (1968). This structure
was divided into two experimental conditions;i the first
was 16 variables and 4 factors and the second was 12
variables with the same 4 factors. (The reader should
note that factors II and IIl in Browne’s structure are
nat orthogonal. The angle between these factors is
aproximately 77 degrees. Since only an orthogonal
rotation was used in the analysis, one wonders why
Browne did not employ only mutually orthogonal
factors.) Ten random correlation matrices were
generated from each of the experimental population
factor loading structures for sample observation sizes
of N=100 and N=3500, respectively. Hence 10 times 2
times 2 = 40 sample correlation matrices were factor
analyzed by the four differnent techniques. The four
di fferent techniques included PCA with initial

communality estimates placed on the diagonal.
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Three disensionality assesssent rules were tested
for the hybrid PCA technique. The first two rules were
to choose the number of factors associated with the
eigenvalues of magni tude qrcatcf than 1 and O,
respectively. Saunder’s method which was sentioned
earlier in the literature review, was also tested. For
the eigenvalues greater that 1 rule, 28%Z of the
dimensionality assessments were correct. The remaining
assessaents were within 2 factors of being correct with
35% predicting 3 factors and 37%Z predicting 2 factors.
The eigenvalues greater than O rule was within one
factor for 43537 of the assessments and high for the
rest, and the variance was much larger for this rule

{ than the eigenvalues greater than 1 rule.

In the fixed effects ANOVA experiment each cell
contained 10 replications of mean square loading errors
(10 correlation matrices for each cell; 4 (models)
timeg 2 (sample sizes) times 2 (# of variables) = 16
cells). All the treatments and treatment interactions
proved significant (alpha=.05), save the interaction
between number of variables and number of observations.

To summarize; Manners and Bush provide evidence

that factor analytic reliability is influenced by

1) The specific factor analytic msodels chosen.

2) The interaction of factor analytic model
choice and number of variables.

3) The interaction of factor analytic asodel
choice and sample size.

4) The interaction of factor analytic model
choice, sample size and number of variables.

25
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In.passinq, one also notes that all the main
treatments: variables, observations, and models were
significant. Sampling error decreassd as cbservations
increased. Sampling error also decreased as the numsber
of variables increased, much as is observed in sultiple
regresion analysis.

This ends the literature review section dealing
with Monte Carlo experimental work in factor analysis;
The following paragraphs present a brief overvieu’of
recent literature which is related either to the/f
research in this report or the factor analysis problem
in general.

The rotational scheme used in this report is due
to Schoneman (1966). This rotational procedure allows
one to rotate a sample factor loadings matrix to given
target matrix (usually the hypothesized population
factor loadings matrix). The rotation is accomplished
in such a manner as to minimize, in a least squares
sense, the residual differences between the rotated
matrix and its target.

Odell and Feiveson (1966) provide the sethodology
by which all the reviewed studies generated sample
values from multinormal populations with given
covariance structures. An algorithm for the bivariate
normal is given by Naylor (1946).

A mathematical entity known as the condition

number of a matrix is used in this report. The

26




P . ' z:=IllllHl======------.-...!

condition number of a satrix is an especially useful
tool in systems of linear equations. If small errors in
the right-hand side or coefficients of a linear systea
produce a large effect on the solution, then the system
of equations is said to be ill-conditioned. The
condition number of a matrix serves as an index of this
ill-conditioning. The candition nuaber of a matrix is
given by the absolute value of the ratio of that
matrix’s largest eigenvalue to its smallest. Westlake
(1968) offers a clearly written text on the application
of the condition number and other measures as applied
to matrix inversion and linear equations. Belsley, et
al. (1980) discuss the effects of ill conditioning by
applying the conditiaon number in detecting collinearity
in multiple regression.

Anderson (1958) is recommended for rigorous yet
succinct theoretical treatment of PCA. Joreskog (1979)
offers a novel introduction to factor analysis and its
associated vernacular using the concept of partial
correlations as a starting point. The second paper in
the book deals with statistical tests for confirmatory
factor analysis, the only such statistical tests this
author was able to find. Also there is an interesting
article by Catell and Sullivan (1962) in which the
concepts of factor analysis are made clearer to the
novice through the use of a physical example using cups

of coffees.
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Objectives of the Research
The objectives of this research effort were the
followings
1) Develop software which will allow a user to
study the influences of sample size, number of
variables, number of factors, and complexity of the
factor structure in PCA. This software was to allow a

user to input either a particular structure or given

covariance matrix.

2) Address the three questions raised in the
problem statement.
E . 3) Summarize recent developments in this area as

[ found during a literature search.
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Scope of the Research

Dimensionality Assessment. Kaiser’s criterion and

the Scree test are the two disensionality assessment
procedures to be addressed in this report. These two
procedures appear to be the most popular. It was also
felt that testing Horn’s procedure on the CDC 6000
would prove cost prohibitive.

Factor Interpretation. This report did not treat

the problem of selecting the most appropriate
rotational technique. This report assumes that the
correct rotational scheme is applied. This report
attempts to provide a tool by which investigators can
estimate the magnitude of factor loading errors to be

[ { incurred under various experimental conditions. In
particular, sample sizes were taken from the range
10-100, the number of variables ranged 10-135, the
number of factors ranged from 3-6. In total 27 separate
population structures were examined. Each structure was

examined at sample sizes of 10, 23, 50, 100.
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Approach to the Research

The research design used in this report was as
follows: Initially, seven 10 variables by 3 factors
structures were examined. These structures will be
referred to as the "original” structures. The original
structures are given in figure 1. These original
structures are the lower left hand point in the graph
of the research design given in figure 2, with
coordinate (3,10). Next, four of the original
structures were selected to be perturbed by the
presence of added nuisance variables. These structures
are given in figure 3. Five and two nuisance variables
were added to these structures,respectively. The
nuisance variables were chasen to load on single
factors and have communalities between .01 and .09.
These eight structures are coordinates (3,15) and
(3,12) on the research design graph. The coordinates
(4,10) and (6,10) consist of three structures each,
perturbed by the presence of one and three nuisance
factors. The nuisance factors were constructed such
that all factors were orthogonal (save factors V and VI
in structure 17, they form an angle of approximately 74
degrees, as it turned out this discrepancy was
insignificant, as in Browne’s (1968) structure). The:s-
structures are given in figure 4. To complete the
design the same three structures were perturbed by both

nuisance variables and factors. These structures are
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given in fiquro S. These structures are coordinates
(4,12) and (6,15) in the research design graph.

Each of the 27 structures were examined over
sample sizes of 10,25,50, and 100. These sample sires
are considerablely lower than those used in the
reviewed studies: 100 and 400 were used by Hamburger
(1967), Joreskog (1963) used 100,200, and 300, Clif¥f
and Pennell (1968) used 100, 150,300,600, and 23500,
while Manners and Brush (1979) used 100 and 500. These
studies reported that experimental results were, in
general, only moderately improved by increasing sample
size. Therefore, it was thought that the lower sample
sizes would provide not only more interesting results
but shed some light on just how many samples are
required to perform an accurate PCA in the given
experimental region.

Each structure and sample size combination was
analyzed according the following experimental
procedure:

1) A population covariance matrix was formsed by
multiplying the population structure matrix by its
transpose.

2) The appropriate number of sample vectors were

drawn randomly from the population covariance matrix.
3) The sample vectors were then used to fora a
sample correlation matrix. The condition number of
this matrix was calculated at this step.
36




y ———————————

4) The sample correlation msatrix was then factor
- analyzed by the PCA procedure. The correct nusber of
factors were retained. Disensionality assesssent
statistics were collected at this ft.p.
: 3) A factor loadings matrix was prepared and

rotated via a least squares procedure due to Schonesan
(1966) back to the original population structure. The
mean square deviation of sample loadings from
population loadings was calculated at this step.

6) Steps 2-5 were repeated 1000 times for each

structure—-sample size combination.
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Co-plicatibns in a Population Structure

Rationale. One difficulty in a study such as this
is in determining what structures should be exaained.
The limited experience of this author indicates that
“simple” structures, whose variables locad on no more
than a few factors and which contain many zeros, are
probably of the greatest use. This intuitive feel is
merely a vague generalization of Thurstones criteria
(see Harman, 1?67, pPg. 98) which is widely accepted as
a desirable quality of a population structure. In any
event, more "complicated" structures may be very
difficult, if not impossible, to give any meaningful
interpretation to.

Once one has decided to use these simple
structures one might wish to study several such
structures. The question arises, how does one caompare
different factor structures? It stands to reason that
a perfect, simple population structure (all ones for
loadings with each variable loading on a single factar)
will be easier ta detect from sample data than a
structure with low factor loadings and variables which
load on more than one variable. Here the second
structure could be said to be more complicated than the
first. It would be desirable to have an index numbar
which could be derived from a given structure. This
index number should grow in sagnitude as a structure

becomes increasingly complicated. One such candidate
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is the average uniqueness of the structure. Pennell
(1968) rejects such a measure because it does not take
into account the fact that variables of equal
communality may load on differing ﬁunbers of factors.

A given factor structure is said to be more
complicated than another if the first factor structure
is harder to glean from experimental data than the
second. The following is a proposed index for the
complexity of a population structure.

Complexity Index. It was reasoned that

complications in a given structure are due to two
components:s

1> Complication due to structure - i¥f
manisfestation variables load on single variables then
a simple structure exists. As the manisfestation
variables load significantly on more than one factor
the complexity of the structure increases.

2) Complication due to Uniqueness — if
manisfestation variables demonstrate high communalities
across the factors (low uniqueness) then there is a
higher chance of closely reproducing this factor
structure than that of another structure with higher

uniqueness.
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Let the complexity index be defined by the

quantity:
M N J-1° M
2 2 2 (aikaij)z 2 h;
i=1 j=2 k=1 . g _dmt
M M

where the Aij are factor laoadings in the ijth position.
N is the number of factors, and M is the number of

variables. The Hi are the communalities of the ith row

of the factor structure matrix.

The first term is the complexity due to structure.
The second term is the complexity of the structure due
to uniqueness.

The second term is simply the average uniqueness of
the structure. As the average uniqueness grows the ‘
complexity grows. This term is bounded by O and 1.

The first term is the quartimax criterion divided

by the number of variables, M. The quartimax criterion
is minimized at 0 when perfect simple structure is
present. As variables start to locad on more than one
factor this quantity grows. In order for this quantity
to be useful as a component of an index it has to be
bounded. The lower bound is zero. The upper bound can
be found if the following maximization problem can be

solved.
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MAXIMIZE

lsl vi=1"to'M' Vj=1,..-,N

2) 2 (aik)2‘1 Vi=1,...,M

M
3) Z 2855 = O Vk # j

The first constraint merely requires the loadings
to Be less than or equal to unity. The second
constraint requires each variable’s communality to be
less than or equal to unity. The third constraint
reflects the mutual orthoqonality of the factors.

If only the first constraint is taken to be

binding an upper bound of

*(2)

can be established by setting all the elements in the

matrix to 1.

I¥ we require both the first and second constraint

to be binding then:

M M N N
Z Z (a' a, ')2 < Z z Z (aik)z (ai'
j=2 k=1

J

5]

)2




and
2 2
2 (3,02 (a, )% = (a ) (a;,)
e R I =X B L M v B =7 S P M= G
; and
M N N M N
2 2 (a; )2 2, (aik)2 < 2 X (a”)z-l
: i=1 j=2 37 k=1 i=1 j=2
similarlys
M N
Z Z 2.1 < Z 1+1 = M
hence M also acts as a weak upper bound.
{ This author was not able to determine a upper

bound with the third constraint binding.

] To summarize, the above index is submitted as a
possible candidate to compare differing structures for
inherent complexity. This index does not attempt to
account for the possible influence due to the ratio of
the number of variables to the number of factors. In
light of this fact, comparisons in this report using
the complexity index are only done across structures
with the variable to factor ratio held constant. Two
other points should be noted. First, a weak upper
bound is used to normalize the structural complexity
term. Undoubtedly a stronger upper bound computed with

the third constraint binding would lead to a stronger
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index. Secondly, it was assumed that the weights on
the two teras were equal. This assumption implies that
complexity is equally attributed to structure and
uniqueness. If the index proves promising, perhaps

future regression studies could address this issue.
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Dimensionality Assessment Analysis

The two dimensionality assessment techniques
addressed in this section are Kaiser’s criterion and
Catell’s scree test.

Kaiser’s criterion is to ﬁerely retain all factors
whose associated eigenvalues ae greater than or equal
to 1. Catell’s scree test is a graphical technique in'
which an investigator looks for a break in a plot of
rank ordered eigenvalues. This section does not
attempt to make statistical statements about these i
techniques.

Kaiser’s Criterion. For all the structures

{ examined in this study, all dimensionality assessments
based on Kaiser’s criterion were within two factors of

being correct. This is probably attributed to the

structurally “"clean” sampling populations studied and

the low factor to variable ratios used. Most

dimensionality assessments were, in fact, within one

factor of being correct.
Histograms of dimensionality assessmsents due to
Kaiser’s criterion are given in figure 6 for structures

1,3, and 7. The correct dimensionality for each

0 T T TR TINTIREY TR A e e oo e e

structure is 3. Each histogram contains a total of
1000 dimensionality assessments. Note that the
variability in the dimensionality assessments is
markedly larger in structure 7 than in structure 3.

Although the percentage difference in average
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coamunality is only abaut 14%, the percentage
difference in the complexity index is 48%. No solid
conclusions can be drawn at this point, but at least
one notices that the complexity index is moving in the
right direction.

In figure 7 histograms are presented for structure
23. This structure is perturbed by 3 nuisance
variables and 3 nuisance factors. It is one of the
more complicated structures stuidied in this report.
Although, in an absolute sense there are &6 inherent
population factors: to this structure, 3 of these
factors account for less than 3% of the tatal variance
which could be explained by this structure. As can be
seen in the histograms a dimensionality assessment of 3
was never made. Clearly the addition of nuisance
factors and variables can impact dimensionality
assessments via Kaiser’s criterion. However, for the
structures studied here, one can expect to be within 2
factors of the true dimensionality. To this author,
Kaiser’s criterion seems to be a good rule for thumb
for dimensionality assessment.

Catell’s Scree Test. Since this test is graphical

in nature, it was very difficult to conceive of a
method to apply Mc *e Carlo techniques to its analysis.
Clearly, one could not hope to examine a thousand
graphs visually within a limited time pariod.

Catell’s scree test is a graphical technique used
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Figure 7. Dimensionality Assesseent Histogramss




to visually locate the hypothesized break in ranked
esigenvalue magnitudes which should occur just before
that eigenvalue which is associated with the correct
dimensionality. The Scree test is explained in the
literature review section of this thesis.

Catell would have an investigator retain factors
down to and including the factor which begins his scree
line. To test this procedure the following approach
was taken. If the scree test is an acceptable
procedure then certainly one would expect the method to
work well under ideal conditions. An ideal condition
for an investigator wogld occur if he were sampling
from a population like étructure 1. Figures 8,9,10,
and 11 are Catell’s scree test for sample sizes
10,25,50, and 100 respectively for structure 1. Each
plotted point is the mean of the ith ranked eigenvalue
over 1000 trials at the particular sample size.
Approximate 957 confidence intervals are provided for
the means of the eigenvalues at the correct
dimensionality (3, in this case) and 1 plus the correct
dimensionality. Note in figure 8 that there is no
apparent break in the means of the ranked eigenvalues.
This situation improves markedly as the sample size

increases, figures 9,10, and 11. Notice in figure 11

that a definite break in magnitude is present between
eigenvalues 3 and 4. Further, notice that the

confidence intervals for the two eigenvalues do not
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overlap. If one were to apply Catell’s scree test to
the means of these eigenvalues, clearly, one would
retain 4 factors. Thus, when sampling is accomplished
under even ideal conditions Cateli’s test has yielded
incorrect results. In fairness to Catell, however,
figure 11 could be said to exhibit what Catell refers
to as a double scree line. Catell’s procedure is
modified when a double scree line is observed. Factors
are retained down to and including the factor which
begins the upper scree line. Under this modification
the correct number of factors would be retained.

Notice that Kaiser’s criterion was a flawless indicator
for structure 1 and N=200. Figure 12 is another ranked
mean eigenvalue graph.‘ This time structure 23 provides
the data. The sample size is 100. Structure 23 has 3
nuisance factors and 3 nuisance variables. Notice that
the same break occurs between the mean of the
eigenvalue magnitudes of factor numbers 3 and 4. This
time, however, the confidence intervals are quite wide
and overlap. It is not clear whether or not a break in
the eigenvalues will even appear in a particular

sample.
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Factor Interpretation Analysis

This section presents the results of a regression
study undertaken to determine if the sampling errors of
the experimental region were predictablae.

Experimental Procedure. To reiterate the

experimental procedure, first sample vectors were
generated from the population covariance matrices.
These sample vectors were then used to form a sample

correlation matrix. The sample correlation matrix was

factor analyzed using the PCA procedure and the

resul tant factor loadings matrix (of the correct
dimensionality) was then rotated, via a least squares
procedure, to fit the original population structure.
The mean square discrepancy between the sample loadings
matrix and the population loadings matrix was then
calculated. This mean square error was calculated
across all the loadings. The mean square error (MSE)

is calculated by the formula

NOM 2
2 X (a5
=i

MeN

where the a are the factor loadings for the

ij

population factor loadings matrix, aij are the factor

loadings for the sample factor loadings matrix, M is

the number of variables, and N is the number of
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factors. The root mean square (RMS) error is taken as
the square root of the MSE.
Parformance of the Complexity Index. Figure 13 is

a plot of MSE versus the average communalities of the
original structures. Notice how structures 6 and 7
produce noticable "bumps" in the set of curves. These
two structures have four variables which load
significantly on more than one factor. All the other
structures used in figure 13 contained only univocal
variables. One would expect small bumps due to
sampling fluctuations but the aberration due to

structure 7 seems a bit severe. Figure 14 is a plot of

MSE versus the complexity index. This graph displays

more of the monotonicity one would expect. A similiar
graph is presented for the more complicated structures
which are perturbed by nuisance factors and variables.
In this graph one notices that there are two pairs of

structures whose complexity indices are quite close.

In all but one case the corresponding MSEs ware quite

close. The exception occurs for structures 26 and 27.
The variance of these MSE values are of the order
«00001 and so it seems clear this particular variation
i is not due to sampling error. It is probably due to
| one of the complexity index’s inherent weaknesses as
sentioned previously. All in all the index seems to be
performing fairly well. At least the complexity index

is an improvement over using average communality (or
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uniqueness) as a criterion of a population structure’s
complexity.

Regression Study. Several different regression

models were hypothesized and tested in order to
determine if MSE or RMS errors could be reasonably
predicted as functions of sample size, the number of
variables, the number of inherent factors, complexity
of the population structure and the interactions
between these. The condition number of the sample
carrelation matrix was also examined for its possible
aid in predicting MSE or RMS errors. In these studies
each MSE or RMS value was taken as the grand mean of
1000 iterations on a particular structure—-sample size
[ combination. The same, then, is true for each sample
condition number. Two types of regression models were
; : attempted.

1) Linear models with interactions——these models
were run using the Statistical Package for the Social
sciences (SPSS) (Nie, 1975). A stepwise regression
3 : scheme was employed for variable selection. The
following models were run:

a) MSE as a linear function of sample size,
number of factors, number of variables, and all possibe
multiplicative interaction combinations. This model
was also ran with RMS as the dependent variable.

b) MSE as a linear function of sample size,
number of factors, number of variables, complexity
index of the population structure, and all possible
multiplicative interaction combinations. This msodel
was also ran with RMS as the dependent variable.

c) MSE as a linear function of sample size,
number of factors, number of variables, condition
number of the sample correlation matrix, and all
possible multiplicative interaction combinations. This
model was also ran with RMS as the dependent variable.

2) Nonlinear models—-—These models were also run
on 8PSS. Nonlinear production functions of the
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Cabb-~-Douglas type (Nicholson, 1978) were run over
various combinations. The Cobb-Douglas type function
was chosen because preceived nonlinearities which were
"eyeballed” in the data. Also, the Cobb-Douglas
function is flexible in the sense that it can mold
itself to many different shapes. The Cobb-Douglas
function is of the form

= B Bl. LN Bn
Y = By X' X X,

The following models were run:

a) RMS with independent variables: sample
size, number of factors, and number of variables.

b) RMS with independent variables: sample
size, number of factors, number of variables, and
complexity index of the population structure.

c) RMS with independent variables: sample
size, number of factors, number of variables, and
condition number of the sample correlation matrix.

The following are used as abbreviations:

1) Sample size--N
2) Number of factors—FAC or F
3) Number of variables—VAR or V
4) Complexity Ihdux —C
9) Condition aumber——k
6) Interactions-—an evample is NxF or sample
size ¥ number of factors
Figure 16 is a tabular comparison of the results
from the linear models. Note that the best predictions
are made from the model which includes the mean
condition number of the sample correlation matrices.
Note that sample size is the most significant
independent variable in all the models, It is
interesting to note that the addition of the complexity
index into the first two models, although only
ieproving the model’s predictability slightly, creates

a4 situation wherein the second maost significant

independent variable is a interaction ters on the

complexity index. The cooi;ici.nts of the predicitive
1




Sependent Var nSE /NS WoE RS NSE N5
Independent Var N, VAR, N, VAR, N, VAR, N, VAR, N, VAR, N, VAR,
FAC, fac, F&C, C, Fac, C, FAC, K, FAC, K,

INTERACT INTERACT INTERACY INTERACT INTERACY INTERACT

Multiple R: 47089 39562 A7471 62213 J2148 716580
Adjusted R 43966 . 36283 46376 60244 70671 73321
Overall F 42,68424 46.64277 43,3177 30,70097 48.228 60.61838
Significance 900 000 000 000 000 .000

Final Variables
in Nodel X ] N N VK N
fF Ratio, Signif  80.9, .000 70.6, .000 81,38, .000 44.72, 000 27.9, .000 £2.51, .000

VAR NxFxV CxV NxFxC NxFxK Nx¥xK
3.67, .05 14,5, 000  4.43, ,033 13.42, .000 23.28, .000 28.34, .000
f f N FiK
4.15, 045 10.31, .002 26,04, .000 17.29, .000
Fx Fxv KxFxK

6,68, 011  4.36, .040 18.93, .000
,‘ NxVxC K NxK
i 3.51, 064 3.64, 039  5.94, 017

Std. Error 02069 0420 02062 04l 01525 L0323
Std. Error / Y 48454 21234 4762 20728 35714 1633

Figure 16. Linear Models with Interactions
(100 Observations)
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equations ﬁiven by the 6 maodels are given in figure 17.
Care should be taken when attempting to predict from
regression relationships which use the condition
number. If the sample size is less than 25, reasonable
results can not be guaranteed. The variability of the
sample condition number in the region studied was of
the order 1.0E+15 for the sample sizes of 10. 1In
summary, RMS errors are more accurately predicted than
MSE. Taken in pairs, the standard errors of the
estimates when normalized by their respective mean
estimates are always lower for RMS regressions than for
MSE regressions.
Figure 18.is a tabular comparison of the results

{ from the loglinear models. Note that these models
display slightly high adjusted r—-squared values. Here
again, notice that the sample size is the most

significant independent ve-iable. In the second model

complexity is the second most significant independent
variable. The nonlinear models are slightly superior
to their linear counterparts, the standard errors
normalized by the log of the mean estimate afe in all
cases lower than the linear models.

The regression study shows that for the

experimental region studied the errors due to sampling
in a factor loadings aatrix can be reasonably predicted

by either linear models or nonlinear models.
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N
Dependent Var RS RMS /1S
Independent Var X X N
v y v
F F F
c K
Kultiple R 17826 81534 78101
Adjusted R J1095 807195 128
Overall F 106.464 99.355 80,243
Significance .000 000 000
Final Variables
in Model N N N
F Ratio, Signif  290.2, .000 341.9, .000 49.52, .000
v v v
21,79, .000 10,41, .002 22.27, .000
F F F
4,11, 046  S.86, (017  3.82, .034
: ' c K
: 18,08, .000  1.13, .291
§td. Error 13778 L1478 15787
st‘. Eﬂ'ﬂ’ l ll\ ' -u°’137 ‘.m“ 'l“’“

Figure 18. Loglinear Models
(100 Obhservations)
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Conclusions

A limited examination of Kaiser’s criterion and
Catell’s scree test indicates that Kaiser’s criterion

. is usually good to within a factor and was always, for

the structures and sample sizes addressed in this
report, no more than 3 factors from the true
dimensionality. In an ideal sampling situation
Catell’s scree test seems to retain one too many
factors, and it is not always easy to identify the
scree line.

The concept of a complexity index appears to be
promising. If possible, a stronger upper bound needs

to be found for the first term of the index. The

possibility of unequal weights for the two terms could
be investigated through some further regression
studies.

The results of this research indicate that it is
reasonable to estimate an overall mean error due to
sampling for structures in the particular experimental
region addressed by this report.

This author believes that this report has

demonstrated that sample factor loadings matrices are

sensitive to sample size and, more importantly, the
structural complexity of a given population factor
loadings structure.

The author recommends future research which would
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address the sampling distribution of the complexity

index.
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